Search results for "Protein Phosphatase 1"
showing 6 items of 6 documents
Cold stress defense in the freshwater sponge Lubomirskia baicalensis
2007
The endemic freshwater sponge Lubomirskia baicalensis lives in Lake Baikal in winter (samples from March have been studied) under complete ice cover at near 0 degrees C, and in summer in open water at 17 degrees C (September). In March, specimens show high metabolic activity as reflected by the production of gametes. L. baicalensis lives in symbiosis with green dinoflagellates, which are related to Gymnodinium sanguineum. Here we show that these dinoflagellates produce the toxin okadaic acid (OA), which is present as a free molecule as well as in a protein-bound state. In metazoans OA inhibits both protein phosphatase-2A and protein phosphatase-1 (PP1). Only cDNA corresponding to PP1 could …
A subunit of eukaryotic translation initiation factor 2α-phosphatase (CreP/PPP1R15B) regulates membrane traffic.
2012
The constitutive reverter of eIF2α phosphorylation (CReP)/PPP1r15B targets the catalytic subunit of protein phosphatase 1 (PP1c) to phosphorylated eIF2α (p-eIF2α) to promote its dephosphorylation and translation initiation. Here, we report a novel role and mode of action of CReP. We found that CReP regulates uptake of the pore-forming Staphylococcus aureus α-toxin by epithelial cells. This function was independent of PP1c and translation, although p-eIF2α was involved. The latter accumulated at sites of toxin attack and appeared conjointly with α-toxin in early endosomes. CReP localized to membranes, interacted with phosphomimetic eIF2α, and, upon overexpression, induced and decorated a pop…
Control of the mutagenicity of aromatic amines by protein kinases and phosphatases
1997
The role of protein kinase C and protein phosphatases was examined in the control of mutagenic metabolites of aromatic amines. Various metabolic activating systems derived from rat liver were treated with: 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C modulator; okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatases (PP1 and PP2A); and ortho-vanadate (OV), an inhibitor of tyrosine phosphatases. TPA used over a wide concentration range (10−9–10−6 M) did not affect the bacterial mutagenicity of the aromatic amines and of the aromatic amide investigated, 2-aminoanthracene, 2-aminofluorene and 2-acetylaminofluorene (2AAF). At the molecular level, TPA did…
Spatial learning and expression patterns of PP1 mRNA in mouse hippocampus.
2009
<i>Background:</i> Synaptic plasticity is believed to be the major cellular basis for learning and memory. Protein phosphorylation is a key process involved in changes in the efficacy of neurotransmission. In long-term changes synaptic plasticity is followed by structural plasticity and protein de novo synthesis. Such mechanisms are believed to build the basis of hippocampal learning and memory investigated in the Morris water maze (MWM) task. To examine the role of dephosphorylation during that model for spatial learning, we analyzed protein phosphatase 1 (PP1) expression in the hippocampus of mice at various stages of the task and in two groups with different learning abilitie…
Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 ph…
2006
Aplidin® is an antitumor agent in phase II clinical trials that induces apoptosis through the sustained activation of Jun N-terminal kinase (JNK). We report that Aplidin® alters glutathione homeostasis increasing the ratio of oxidized to reduced forms (GSSG/GSH). Aplidin® generates reactive oxygen species and disrupts the mitochondrial membrane potential. Exogenous GSH inhibits these effects and also JNK activation and cell death. We found two mechanisms by which Aplidin® activates JNK: rapid activation of Rac1 small GTPase and downregulation of MKP-1 phosphatase. Rac1 activation was diminished by GSH and enhanced by L-buthionine (SR)-sulfoximine, which inhibits GSH synthesis. Downregulatio…
Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1
2001
Glucocorticoids inhibit the proinflammatory activities of transcription factors such as AP-1 and NF-kappa B as well as that of diverse cellular signaling molecules. One of these signaling molecules is the extracellular signal-regulated kinase (Erk-1/2) that controls the release of allergic mediators and the induction of proinflammatory cytokine gene expression in mast cells. The mechanism of inhibition of Erk-1/2 activity by glucocorticoids is unknown. Here we report a novel dual action of glucocorticoids for this inhibition. Glucocorticoids increase the expression of the MAP kinase phosphatase-1 (MKP-1) gene at the promoter level, and attenuate proteasomal degradation of MKP-1, which we re…